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Summary

• The reduced opening angle technique offers a simple way with minimal

model dependence to measure cosmic ray energies over a broad range with

out any normalization uncertainties.

• The emulsion film and CR39 detectors proposed are well established

techniques and should perform adequately.

• The analysis method depends on accurate automatic scanning of the CR39

plates. UAH have developed such a capability.

• With the proposed geometry energy measurements to - 5 TeV/a can be
made.

• The expected iron event rate (E>500 GeV/a) is 10 m "2day "l.

• The expected energy resolution, from accelerator calibrations at 200

GeV!a, is -50% to +80%. Since the absolute flux has some sensitivity to the

assumed power law index it is essential that good energy resolution is
obtained.

.The expected charge resolution is - 0.3 charge units for the CNO group

falling to - 1 charge unit for the iron group.

• A suitable event trigger would be a measurable (> 2 _tm) deflected heavy

(Z>2) fragment.

• One potential background is electromagnetic dissociation that

predominantly couples to individual protons or alphas. Although the cross-

sections can be appreciable such events will not pass the event trigger.
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1. Introduction:

Accurate measurement of the primary galactic cosmic ray species energy

dependence in the regime beyond - 500 GeV/a is difficult due to the low flux and the

limitations of energy measurement techniques. However, such observations are essential

to resolve several questions of current interest such as: Is the enrichment of heavy species

(Z.2_6) cosmic rays f'trst reported at higher energies by the proton satellite *and then later at

lower energies" real? The results from a previous deployment of the reduced opening

angle technique are inconclusive "_but the authors do point to limitations in the previous

techniques. Another intriguing puzzle is the energy dependence of silicon cosmic rays.

Two independent experiments using different experimental techniques indicate that

silicon is under-abundant. At present the observation is limited by statistics; it could still

be a three sigma fluctuation. However, if confirmed the current models of acceleration

and propagation which are species independent are seriously inadequate.

To progress further the species and energy dependence must be accurately

measured in a manner that is free from systematic uncertainty. In this report we show that

the reduced opening angle method offers a simple and relatively inexpensive method to

answer these questions.

First we present the physics of the reduced opening angle and indicate the

expected energy and charge resolution. The proposed detector design is then presented

followed by the expected performance. Where ever possible simple phenomenological

expressions that allow 'back of the envelope' estimates are given. More details are

presented in the appendices. The limit of the energy resolution and the expected event

rates for iron cosmic rays are calculated. Salient points are summarized in the

conclusions.

2. The reduced opening angle technique

2.1 The physics of the technique

The method relies on the experimental observation that the fragments from an

high energy collision, in the rest-frame of the projectile, have a universal isotropic

Gaussian momentum distribution that is independent of the fragment mass: the decay is

independent of formation "_v. The target nucleus acts only to inject energy into the

projectile, raising it to a state of high excitation and causing it to 'explode' into a number

of fragments. There is no memory of how the energy was transferred. The relative

probability for a given fragment is independent of the excitation process. We note in

passing that this technique shares most features of the Castagnoli v method 2 used for

mesons.

The Castagnoli method is derived from the well known relation tan0 _= TLtan0*/2

between the lab. angle 0 and the c.m. angle 0'. This is obtained by the approximation that

c" =sqrt(p'Z+m',) - p" in the c.m.s. This approximation is not applicable in the case of

evaporated fragments from nuclei since p" - PF << Ms. Hence s" - Ms



2.2 The fotrnalism

We shall closely follow the formalism of Ichimura et al'_. We first restrict the

disenssion to cx-particles and then show how this may be extended.

With the cx opening angle technique the primary energy per nucleon (Eo) is given

by:

P,= (/'T=)

1.

with <PT_> _ 70-90 MeV/c, where 0_ is the emission angle of the a in the laboratory

system. Though equation (1) is easy to use, the energy being determined from the

quotient of <PT_> to 0_. there are several practical problems:

1) Fluctuation from the mean

2) The energy is influenced strongly by the most forward a-particle

3) Not all the fragments are a-particles.

The third problem is most critical especially for light nuclei: oxygen to silicon. A

solution to these difficulties has been developed based on the theoretical model of

Goldhaber _. Let Pf be the total momentum of a fragment with mass number A_ produced

from the projectile with mass number A r Goldhaber showed that the mean square

momentum <P2e> in the projectile rest frame is given by:

Aj (Ap - A j)

T,,-=i
.

where <p2> is the mean square momentum of a nucleon. It is approximately related iii to

the Fermi momentum pf by

_. 180 MeV/C

,

Although equation 2 is derived from simple assumptions it reproduces heavy-ion-beam

fragment data well '_. Using this equation we immediately obtain the following relation

(Ap - 1)

4.

with <P2r_> = (2/3) <P2N>; the transverse momentum is expressed per nucleon.

We have so far only considered a-particles. To extend the model to the full range

of fragment species we introduce a reduced angle 0 given by:



.

The reduced angle calculated from equation 5 is independem of the mass of both the

projectile and the fragment. Hence while the angular distribution ¢p depends on the

projectile, energy as well as the participant masses by using the reduced angle a

considerable simplification occurs:

9(E0,0fi Af Ap)dO 2f = (p(c0dq 2
6.

with q - _3LTL0= yL0, where 13Land YLare the velocity (c = l) of the projectile in the lab.

system and its Lorenz factor.

This is a crucial result: we can treat equivalently any fragment p, a, Li, Be, ...

Consequently the fluctuations in the average transverse momentum will be considerable

reduced from those that come with only measuring individual (x-particles.

2.3 Comparison with experimental heavy-ion beam data.

The validity of the scaling law (equation 6) can be seen in Fig. I. The scaling law

holds for a range of species over a wide energy range. The shape may be reproduced by

the summation of two Gaussian curves fit to the experimental data with the constraint that

xi+x2 = l.

i|
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Figure 1 qZdistribution of (x-fragments for

various projectile at several energies.

= rla_e t-4qb + r2a_le (-4,e')

.
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with al, 2 - _/-g"S'-_, "Ci=0.7252, X2= 0.2748, Ch = 98.5 MeV/c, _2 = 239.6 MeV/c.
qz,r, 

We now calculate the mean value of lnq (= lnl3LYL0)

.

< q >= J_lnq_b(q)dq 2 1 2_0=--y+ln_

2 M
N

where _, (=0.5772) is the Euler constant, and

cr0 = o'__'cr_" = 125.8 MeV / c

so that

2 -2(ino)YL 1 + YO e _ yO e

Hence the average value of 0 is given by

(o)- ro
YL

with

_-cr° e -r/2 = 0.1422

7'o - M.

The mean value of <ln0> is obtained experimentally by

nl

(ino)=±y.t.o 
H/ i-i

.

10.

11.

12.

]3.

where nf is the number of fragments.

From a practical point it is important to to exclude wounded protons (protons that

receive significantly more energy transfer) and or _'s in the measured data. To reduce

their number minimum ionizing events with emission angles five times the smallest are

excluded in addition to a cut made on the charge sum restriction.

2.4 Experimental data

This applicability of this technique has been studied using accelerator beams and

works well as shown in Figure 2.
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Figure 2 Accelerator calibrations of

the opening angle technique.

The standard deviation cr is of

magnitude 0.2 - 0.3 for log]0E_/Em,=.

Taking a putative 6 of 0.25 the 200

GeV/a data lies between 112.3 and 356

GeV/a. That is a one sigma error of-
44% to +78%.
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The q_ distributions for (x

events from a range of incident

cosmic ray projectiles is shown

in Figure 3. There is a

remarkable species andenergy

independence to the distribution.

Figure 3 qZ distribution for

fragments from a range of

cosmic ray primary particles.

For the present purposes we are also interested in the q_ distribution for heavy

fragments which is shown in Figure 4. The angle scaling works remarkably well clearly

demonstrating that the technique can be used for all fragment species so long as the

fragment mass is known.
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Figure 4 qZ distribution for a

range of incident cosmic rays

where the emission angle has been

scaled according to equation 5.

3. The Proposed detector

i

" _d_ co_ic ray

-/
- 300 microns _ _-- I"C1U9

lead target foil ]
Interaction in the

leaduqet. "

11

\

\
I
i

Emuldon stack.
-10 double
sided 75 micron

emulsion on 250

micron _pporL

The proposed detector is

relatively simple. It would

consist of a number of modules

as shown schematically in

Figure 5. To reduce

development and fabrication
times and to minimize the

instrument cost each module

would be the same size (40x50

cm) as used for JACEE

experiments.

UAH has developed

digital Wacking techniques so

that the cosmic ray species and

the trajectory can be determined

automatically by scanning the

CR39 plates. Using this

information the expected

location of the pool of

fragments on the emulsion is

examined and the fragment

charge and angular deviation

determined. Hence, as discussed

in 2.2, the energy of the cosmic

ray can be determined.
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Figure 5 Schematicdiagramof the proposeddetector construction

For the design proposed here lead target foils are suggested. However it would

also be possible to use silver emulsions as a target. This was the approach adopted by
Ichimura '_ et al.

4. The expected performance

4.1 The fragment distribution.

Nuclear interaction fragment cross-sections have been measured at energies up to
I0.6 GeV/a for ultra heavy nuclei by Garrard et al. '_ii and Waddington et alY. A detailed

discussion of the total and partial charge changing cross-sections is presented by Nilsen et

al x. Since the total charge changing cross-section provides an upper bound to the

measurements and since new values based on nuclear charge radii are presented by Nilsen
et al. We will first discuss them.

The conventional '_ approach to nuclear cross-section calculation has been to take

the radius '_ as a constantxA _/3. There are several problems with this approach. Firstly

hydrogen does not naturally fit into the series and more importantly electron scattering

form factors indicate that nuclear charge radii do not scale directly as A _t3. As many

charge radii have been measured a more useful approach is to use these data (Nilsen et

alx.) In Table 1 we ;how some measured radii taken from their paper.

r0=R3JAi_ fin
R4w=l.35A It3fin

R, frn

Rs, = StL

r0=R/A u3 fin

Rw=l.35A u3 fin

H

R_= SI_

1.034

1.35

1.034

Li

1.64

2.57

C

i.36

3.09

A1

1.25

4.05

Fe

1.27

5.16

Cu

1.28

5.39

Kr

1.22

5.91

3.13 3.11 3.75 4.85 5.11 5.34

1.32 4.00 3.97 4.79 6.19 6.52 6.82

La

1.21

SnAg

1.23

no

1.22

7.40

Xe

1.21

6.866.45

Au

1.17

7.85

1.20

6.63 6.99

Pb

1.19

7.99

R, fin 5.87 5.90 6.15 6.27 6.69 6.81 7.04

7.39 7.53 7.85 8.01 8.54 8.70 8.99

Table 1 Values of the electron scattering radii and associated parameters.

Nilsen find the best fit to the energy-independent charge changing cross-sections 6

is

[ 1o'(R v ,Rr) = rcx R v + R r - (310 + 0.05)

'R, is the measured electron scattering radius.

* R,, is a conventional radius using a normalization of 1.35xA _n as used by Westfall.

s R, is the nuclear radius computed as a sealing factor (1.277) times the charge radius.

s Cross-sections are usually measured in barns (10_m z) whereas nuclear radii are measured in fermi (10 "'5

m). Hence 1 barn -- 100 fm 2.
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14.
The radii used are the matter radii (R,) taken from Table 1. For iron cosmic rays hitting a

lead target we expect a total charge changing cross-section of 4509 mb. Nilsen et al. have

extended their model to incorporate logarithmic energy dependence. However, the

relatively small energy change from 0.6 GeV/a to 10.6 GeV/a produces a set of very

different parameters see appendix B. Moreover, Nilsen et al. express reservations (see

their paper for an explicit discussion) about extrapolating these expressions to higher

energies. Hence we will use equation 14 to calculate our reference cross-section.

Estimation of the partial cross-sections is more difficult. Some authors _''X'''

believe that at high energies in the regime beyond reaction thresholds and resonance's the

cross-sections will have only a small logarithmic energy dependence. Here we will

present some estimates based on Nilsen et al. The models are relatively crude containing

no nuclear structure information and are unlikely to give a good description of data at the

high energies which are of primary interest in this report. However, they do provide some

guidance. Measured fragment yields for 10.6 GeV/a gold projectiles are presented in

appendix C. These demonstrate the limitations of these simple models.

We compute the partial charge changing cross-section according to the

prescription presented by Nilsen et al. Here AZ is the change in the projectile charge. It

can be positive (a pickup-reaction) although it is predominantly negative (a stripping

reaction):

15.

The parameters are given in Table 2. Ap.r are the projectile and target masses respectively

and K is the kinetic energy (Total energy - m0 ez) in GeV/a.

Pi 21.2_+0.5 mb

P2 1.08_+0.15

P3 (0.485+0.014)A GeV

P4 0.094!-0.013

P5 1.11+0.02

P6 10.8+1.6

P7 (0.85_+0.03)A GeV

Table 2 Parameters for equation 15.

Nilsen et al. also presents simple phenomenological algorithms, with a simple

energy scaling, to calculate the expected fragment distribution yield. No nuclear structure

information is included and the modeled energy dependence gives asymptotic energ3'

independence in the regime of interest here. We also note the cross-section algorithms

were optimized for the fragmentation of ultra heavy nuclei where one would expect some

12



washing out of the strong structural effects seen in sd shell (Z= 8 to 20). Although the

cross-sections were derived from relatively low energy (_< 10.6 GeV/a) data it is

anticipated that there will be no serious deviation from the weak energy dependence

incorporated in the model. However, it should be borne in mind that older attempts to

extrapolate nuclear cross-sections at lower energies have frequently been found

inadequate when higher energy data became available. The cross-sections are shown in
Table 3.

Cosmic ray energy

500 GeV/a

Z__change Cr0ss-section

(mb)

Totalcross-section7 Total charge changing cross-section s

4508 mb 1869 mb

% of the

charge

changing

cross-

section 9

+1 184 9.8

-1 184 9.8

-2 133 7.1

Z_change Cross-section

(mb)

% of the

charge

changing
cross-section

-13 55 3.0
-14 53 2.9

-15 2.851

50-3 109 5.9 -16 2.7

-4 96 5.1 -17 49 2.6

-5 86 4.6 -18 47 2.5

-6 79 4.2 -19 46 2.5

-7 74 4.0 -20 45 2.4

-8 69 3.7

-9 66 3.5

-21 44 2.4

-22 43 2.3

- 10 62 3.3 -23 42 2.3

- 11 60 3.2 -24 42 2.2

57-12 3.1 -25 41 2.2

Table 3 Calculated cross-sections for a 500 GeV/a iron cosmic ray incident on a lead

target. No nuclear structure effects are included. The cross-sections should be taken

only as a semi-quantitative guide.

The total cross-section calculated from equation 14.

The charge changing cross-section calculated from equation 15.
9 These are % of the total charge-changing cross-section. (equation 15) which has been greatly extrapolated
from its know region of validity. NB Since the total hadronic cross-section is calculated from equation !4
to be twice that of equation 15 these values are uncertain to at least a factor of 2.
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4.2 The Charge resolution

The charge resolution is determined by the CR 39 etch detectors. Typical values

of _< 0.3 charge units should be achieved for CNO group cosmic rays falling to _ 1 for

iron group species.

4.3 The energy resolution and the maximum energies that can be
measured.

The measured energy resolution (one sigma) for projectile energies up to 200

GeV/a is -44% to +78% as shown in section 2.4.

For a practical detector the limiting energy resolution is set by the smallest

deflection that can be measured which is itself controlled by the physical separation

between the target and emulsion plates (see Figure 5). For comparison purposes we vail

take the following practical conditions:

1) Target to emulsion separation 0.3 m

2) Emulsion grain sizes of 0.1 pan and the minimum deflection that can be measured is 2

[am.

Using equation 11 we calculate the average emission angle and relate this angle to

a specific fragment angle using equation 5. In Table 4 we show the calculated deflections

in pm as a function of energy. If we set our detection criterion as at least one heavy (Z>2)

fragment we earl perhaps hope to measure energies to - 5 TeV/a with this geometry.

y H 4He 9Be 12C 160 2°Ne 24Mg 2sSi 3zs 36Ar 4°Ca

500 85.3 41.5 26.3 22.0 18.2 15.4 13.3 11.5 10.0 8.6 7.3

1000 42.7 20.7 13.2 11_'0 9.10 7.72 6.64 5.75 4.98' 4.29 3.6
1500 28.4 13.8 8.8 7.3 6.1 5.1 4.4 3.8 3.3 2.9 2.4

2000 21.3 10.4 6.6 5.5 4.6 3.9 3.3 2.9 2.5 2.1 1.8

2500 17.1 8.3 5.3 4.4 3.6 3.1 2.7 2.3 2.0 1.7 1.5

3000 14.2 6.9 4.4 3.7 3.0 2.6 2.2 1.9 1.7 1.43 1.2

3500 12.2 5.9 3.8 3.2 2.6 2.2 1.9 1.6 1.4 1.2 1.0

4000 10.7 5.2 3.3 2.8 2.3 1.9 1.7 1.4 1.3 1.1 0.9

4500 9.5 4.6 2.9 2.5 2.0 1.7 1.5 1.3 1.1 1.0 0.8

5000 8.5 4.2 2.6 2.2 1.8 1.5 1.3 1.2 1.0 0.9 0.7

Table 4 The defections in pm at a distance of 0.3 m for a range of species and for ?

values between 500 and 5000 (0.499-4.999 TeV/a).

4.4 Event rates.

The instrument has been modeled as two paraUel rectangles placed directly above

one another and separated by a constant distance. The aperture factor has been

computed m using the techniques of Sullivan '_' for arbitrary dimensions. However no

attempt has been made to allow for the finite detector thickness nor for nuclear interaction

10Code is on Smiles in the directory $2$dka100:[smitha.nuc__int]ap__fac_rectangle.for
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losses.Hencethe numbersareupper limits. A flight instrumentwould probably use
JACEEgeometry(40x50 cm) but for comparisonpurposesweherepresentthe aperture
factorsfor two square(1 m2)detectors.

Sheet Aperture

separation factor

(cm) (m2sr)

20 2.17

30 1.82

40 1.54

50 1.30

100 0.63

Table 5 The aperture factor for two I m z detectors as a

function of their separation.

To calculate the event rate we will take aperture factor for a sheet separation of 30

era, an exposure of 1 day, and calculate H the integral iron event rate for a range of

energies.

_/ TeV/a Iron event rate/day with
0.3m between two

square (I m 2) detectors.

100 0.1 111

500 0.5 10

1000 1.0 4

5000 5.0 0.3

10,000 10.0

50.050,000

100,000 100.0 0.004

0.1

0.009

Table 6 The expected iron
event rate for two lm z

detectors separated by 0.3

m.

4.5 Determination of the absolute intensity of the primary cosmic
radiation.

The determination of the absolute intensity of the primary cosmic radiation

depends on a knowledge of three factors (that will be discussed separately):

1. The detection efficiency

2. The fragmentation in the overlying air mass

3. The effects of the energy resolution and the geomagnetic cutoff momentum.

4.5.1 The detection efficiency

Often it is difficult to calculate the detection efficiency for a counter experiment.

One of the advantages of the reduced opening angle technique is the simple geometry.

'; Code is on Smiles in the directory $2$dkal00:[smitha.bugs.flux]int fix rec
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Hencethe predominant macertainty is the nuclear cross-section. There are several models

including the one we discuss in appendix B that uses measured nuclear charge radii rather

than values scaled by the cube root of the average element mass. Ichimura et al." used

such a simple scaling model of Karol _v and found that this did give a good reproduction

of the measured cross sections as determined from the ratio of jets to primary particles.

Hence the uncertainties introduced by the cross-section calculations are relatively small.

4.5.2 Fragmentation processes in the overlying atmosphere.

By necessity any balloon deployment will be below an overlying atmosphere of 5-

I 0 g/cm 2. Since this is the common situation a number of techniques have been developed

to correct a measured flux to that at the top of the atmosphere. The techniques must also

account for the flux of secondary particles (from the interaction of primaries with the

atmosphere) and correct the measured flux accordingly. There are a number of revie'ws in

the literature including that employed by Ichimura et al. v_ in their deployment of the

reduced opening angle technique. Uncertainties from such atmospheric interactions are

small and quantifiable.

4.5.3 The effects of energy resolution and the geomagnetic cutoff momentum.

The factor required to calculate the measured flux from the observed flux depends

on the geomagnetic cutoff momentum, the energy resolution and the power law index of

the incoming cosmic radiation. Below - 20 GeV/a a simulation was used by Ichimura ct

al."_ to compute the effect of the geomagnetic cutoff. Beyond - 20 GeV/a the predominant

effect of decreasing energy resolution is to require a larger correction. There is still some

sensitivity to the power index as shown." This is undesirable and is best

controlled by making good measurements so that the energy resolution is small. ]'he

variation with the assumed power index of the primary radiation is relatively small if the

value of log_0 (EJE,n,_) is in the range of 0.2 to 0.3 as was obtained by Ichimura et al. '_ in

their accelerator measurements. For similar cosmic ray species the relative flux ratios will

be welI determined but should the energy resolution change significantly with _,pecies

both the relative and absolute intensities may not be reliable.
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5. Conclusions

The reduced opening angle technique offers a simple way to measure the charge

,and energy of cosmic rays. The technique has minimal model dependence at least up to

several hundred GeV/a. As all the measurements would be made with the same optical

techniques there are no energy normalization uncertainties.

The energy range that can addressed is limited by the instrument dimensions. The

instrument can in principle be scaled to dimensions limited only by the lit_ing vehicle. In

practice the needs for accurate geometric reference points is also a demanding constraint.

For the geometry suggested here (flight path of 30 cm) energy measurements to -- 5

TeV/a can be made with a charge resolution of--0.3 for the CNO group to - 1 for the iron

group. Energy resolutions of-50% to + 80% have been obtained in accelerator

calibrations at 200 GeV/a. A practical limit to the utility of the technique is set by the

cosmic ray flux. The event rate per m 2 of the detector for iron cosmic rays exceeding 10

TeVIa is 0.1 per day.
The absolute flux measurements have a sensitivity to the assumed power index.

The sensitivity is minimized if good energy resolution (log,o (EJE,n,c) --0.2) is obta;ned.

6. Appendices

6.1 Appendix A: Electromagnetic dissociation

Electromagnetic dissociation (EMD) occurs when the Lorentz contracted clccYic

field of the target nucleus contributes to the fragmentation of the projectile nucleus. !n a

simple picture EMD occurs when a virtual photon is exchanged between the t_u.,._,ct

nucleus and the projectile often resulting in the excitation of a giant multil_t,lc
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resonance TM. The total cross-sections from electromagnetic processes can c×cccd thc

nuclear component but the charge chan.v.in_, electromagnetic cross-sections al Icilsl Ibr

gold proiectiles are not large as measured by Geer et a19 _. The EMD component t,_ such

processes can be determined by the method of factorization where it has been sh_)_.,,'n that

thc partial _^z(T,F) for a given projectile can be separated into factors 3,_ depen_iil_, only

on the fragment and 3,T depending only on the target.

cr^z( T, F) = r rT + (7",F)
I().

where c_r_D('I',F ) represents the EMD contribution. For this analysis the hydrogen !xtrttal

cross-sections are used to define _,_-with 7T=H=I. Hydrogen _ are used since they ,_h,,uld

have minimal EMD. The other target _ are divided by the hydrogen cr to give.

o-i._I, (T, F)
Craz(T,F ) = yT +

17.

To determine the magniit,de _1

"t'T a simple expression based on a fit to the cross-section is used.

V o'0

18.

where a,, (=2524 rob) is a normalization factor. Hence the EMD component __m be

determined by subtracting equation 17 from the total cross-section. Although n_, f!X'_I)

cross-sections for iron are reported by Geer et al. _'_ we may estimate their magniludu ;t:;

262

fe) = × ¢r,..^,,,(Au)

It).
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Target Measured AZ = - 1

c (nab) for 197Au

projectiles on a

range of targets

Measured AZ = -2

0 (mb) for 19_Au

projectiles on a

range of targets

C 15±10 5±5

AI 27±9 11±5

Cu 55±10

116±12Sn

13±6

23±7

Pb 268±15 42±7

Deduced AZ=-1

(mb)for_6Fe

projectile.son a

range oftarge_

1.65

3.07

6.05

12.76

29.48

Deduced AZ=-2

o (mb) for _'Fe

projectiles on a

range of targets

.55

1.21

1.43

2.53

4.62

Table 7 Measured electromagnetic dissociation cross-sections for _97Au projectiles

and deduced values for iron (see text).

From comparing Table 3 and Table 7 it is clear that the EMD contribution to the

total charge changing cross-section is - 10 % for AZ = 1 and less for larger charge

changes. For the opening angle technique the reaction channels with only one proton out

produce essentially no deviation in the cosmic ray trajectory and no energy determination

can be made. Hence we can neglect the EMD component to the reaction channels for this

technique.

6.2 Appendix B: Nuclear cross-sections and their energy dependence

(E<10.6 GeV/a).

In this appendix we discuss the energy dependence of the measured nuclear cross-

sections and present some simple phenomenological models that have been fit to dam.

Nilsen et al.x have used a logarithmic scaling that was inspired by the logarithmic scaling

used by the Particle Data Group '_" at high energies to describe nucleon/nucleon

interactions. They parametedze the cross-sections as:

o(R,,Rr) = ,_(e)[R, + RT - O(e)_] 2

F(E)= 1+ FjLn(E)+ Fz[Ln(E)] 2

G(E)= 1 + G, Ln(E)+ Gz[ Ln(E)] z

20.

21.

22.

The F value scales the entire expression whilst the G value modifies the overlap

term AR. Both terms depend on energy and on the model used for the overlap term AR.

Two variants for AR are considered by Nilsen et al: equations 23 and 24. Fits are

provided for each term and a series of measured conditions as shown in Table 8. These

fits include data from Nilsen et al. (a) and from Binns et al. xi_(b) and Geer et al. = (c)

AR =rod;

23.

19



rob

= A_/3 )

24.

Equation

25 _2

El

-1.512±0.012

F2

1.11+0.04

GI

-1.41_+0.04

G2

0.96+0.06 4.65

_N_ 2 v

25 i3 -1.61±0.16 1.18_+0.14 -1.51±0.19 1.04±0.18 3.92 -

2514 -0.28_+0.10 0.09±0.03 -0.40-20.10 0.11±0.04 4.88

2612 -1.24±0.19 0.95_+0.16 -1.6_+0.3 1.1±0.2 4.73

2613 -1.28±0.18 0.98_+0.14 -1.6_+0.3 1.1±0.2 4.07

2614 0.21_+0.04-0.23±0.07 4.86-0.60±0.110.09-&-_0.02

Table 8 Fit parameters for hard sphere models with overlap terms given by

equations 23 and 24.

The computed cross-sections have a strong energy dependence as shown in Table

9. The necessity to use only the parameter specially developed for the particular energy

regime of interest is clear.

Equation

22

22

Parameters

None

2513

2513

Energy

All

1.5 GeV/a

10.6 GeV/a

G barns

4.5O9

4.69

6.i15

22 26 N 10.6 GeV/a 2.701

Table 9 Calculated cross-sections for iron projectiles on lead targets. Models with

and with out energy dependence have been used - see text for details.

6.3 Appendix C: Some measured fragment distributions

In section 4.1 we present simple phenomenological formula for calculating

nuclear fragment cross-sections. For the purposes of this study what may be of more

interest are actual fragment yield data as presented by Waddington et al. TM. Although

these have been measured at low energies and are for ultra heavy nuclei the distributions

are of interest. However, any conclusions drawn from them are subject to these caveats.

In Figure 8 we show that the fragment yield (Z > 3) has little energy variation

between 1 and 10.6 GeV/a.

n There are 43 values of Kr and Ag o(P,T,K) used in these fits from Nilsen et al's. paper.

,3 These fits include the ten additional values of o(P,T,K) from Binns et al.

14These fits include the six additonal values at 10.6 GeV/a from Geer et al. with the electromagnetic
contribution removed.
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Figure 8 Comparison of the yield of Z >_3

fragments at 1 and 10.6 GeV/a with a 197Atl

projectile.

Figure 9 The fraction of _.particles to the
total number of events at I and 10.6 GeV/a

with a 19_Au projectile.

In contrast to Figure 8 the yield of a-particles show some energy dependence• As

the energy increases fewer events have no a-particles and there is a distinct increase in

the region of 3-5 a-particles. The number of fragments plus o_'s (Figure 10) shows a

strong move towards less fragments as the energy increases and the yield of protons also

increases with energy (Figure 11).

21



Figure 10 The yield of all fragments with

Z __.2 as a function of fragment number

for a 19'Au projectile.

Figure 11 The ratio of the protons yield

to the number of events as a function of

the number of released protons for a

19'Au projectile.

It is also interesting to look at the

pseudo rapidity (-log,[tan0/2])

distributions which are shown in Figure
12.

:-:<_:_,_ : Figure 12 Pseudo rapidity

_.-:_:.::_o- distributions for a _Au projectile.

_-.:_!i_::;_ Although the minimum ionizing

..... :.. .i;-_.!: ......_,_. _ particles (protons and pions) peak at

pseudo rapidity's of --2.5 while the heavier fragments are at - 5.5 the tail of the

minimum ionizing particles overlaps the Z _>"2 particles. Hence it is essemial that the
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emulsionfilms employedbe ableto unambiguouslyidentify protonsand pions from all
otherspecies.This is also a requirement to guard against wounded protons contaminating
the distribution - see section 2.2
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